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Analysis of Discontinuities in Dielectric
Waveguides by Means of the Least
Squares Boundary Residual Method

KATSUMI MORISHITA, MEMBER, IEEE, SEI-ICHI INAGAKI, AND NOBUAKT KUMAGALI, SENIOR
MEMBER, IEEE

Abstract—A novel approach to analyze the discontinuities in open-type
transmission lines is proposed. The method used is the least squares
boundary residual technique which has been applied previously to treat the
boundary-value problems in closed-type transmission lines. As an example
of application of our approach, the reflected, transmitted, and radiated
waves caused by the transverse displacement at the junction of two
dielectric slab waveguides are calculated.

I. INTRODUCTION

ISCONTINUITY problems in optical transmission

lines are of great interest from both the theoretical
and the practical points of view. So far, the discontinuities
at the junctions between optical fibers and/or optical
integrated circuits have been investigated experimentally
and analyzed theoretically by several authors [1]-[11].
However, most of the theoretical analyses reported previ-
ously have restricted limitations of practical application,
since they have ignored the radiated or reflected wave, or
both, under the assumption of slight discontinuity.

In this paper, the discontinuities in dielectric waveguides
are analyzed using the least squares boundary residual
method instead of conventional boundary conditions. As
an example of application of the proposed approach, the
reflected, transmitted, and radiated waves caused by the
transverse displacement at the junction of two single-
mode dielectric slab waveguides are calculated. The re-
sults are compared with those obtained by other methods,
and the features of the least squares boundary residual
method are clarified. The method used in the present
paper has been applied previously to treat the boundary-
value problems in closed-type waveguides [12], [13]. To
the authors’ knowledge, however, this method has not yet
been used to analyze the open-type waveguides such as
dielectric waveguides.
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Fig. 1. Discontinuity at the junction of two dielectric waveguides. (a)
Vertical section of the discontinuity between lines I and II. (b)
Transverse cross section of the discontinuity at the junction of two
lines.

II. ANALYSIS OF DISCONTINUITY IN DIELECTRIC
WAVEGUIDES

A. Least Squares Boundary Residual Method

The incoming wave incident upon the discontinuous
junction between dielectric waveguides I and II as
illustrated in Fig. 1 is reflected, transmitted, and radiated.
Let e, and A, be the transverse components of the
electric and magnetic fields of the incident wave, respec-
tively, and e, &, and e(p), A(p) be the electromagnetic fields
of the ith guided mode and the radiation mode, respec-
tively. p denotes the propagation constant of the radiation
mode in the transverse direction outside the waveguide.
The transverse components of the total electromagnetic
fields E' and H' in line I and E™ and H" in line II at the
discontinuity plane (z=0) can be expressed in terms of
the eigenmodes of line 1 and line II, respectively, as
follows:

M
E'=e,+ 2 R,ef+fR(p)e’ (p)dp

=1

M
H'=h,— 2 R,hf—fR(p)h‘ (p)dp

=1

N
El=3 T,e,”+fT(P)e” (0)dp

=1

N
H'= 3 T,h,”+fT(p)h” (0)dp

=1

(1)
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where R and 7,, R(p) and T{(p) are the reflection and
transmission coefficients of the ith guided mode and the
radiation mode, respectively. M and N are the maximum
numbers of the guided modes supported in lines I and II,
respectively.

To transform the integral with respect to p in (1) into
the discrete summations, let us expand R(p) and T(p) into

3
tromagnetic fields E" and H"" consist of the true fields
EL HIY and the error fields 8E-",8H ™

EM= EMU 4 SELD
HM = g4 HY 6)

Substituting (6) into (5), the first variation of F can be
derived as

[ (8E™ (B~ By~ SE™-(E§— E§)+ 23 {8H™ (i~ HY) ~ SH"" (H}~ HY')})ds + cc
S

SF=

(7)

\

J (el + Z81h, P} ds

the sum of proper functions in the form

R(p)= 2 r.f(p)

T(p)= 2 1.L(p). (2)
Substituting (2) into (1), we get
M o0
E'=e_+ z Rel'+ 3 rE/

=1 i=1

M s}
HI:hm_ 2 RIhII_ 2 rI}II[

=1 1=1

N )
E= 3 Tel+ X

i=1

N -}
H'= 3 TH'+ 3 LB

i=1

1=1

(3)

1=1
where

EII.U=ffI(p)eI,II (p)dp

HE = [ f(0)h" (p)dp. @

Now, iet us define the mean-square error of the trans-
verse components of the electromagnetic fields between
lines I and II at the discontinuity plane as follows:

fs{usI ~ E"2+ Z2\H'— H"?} ds
F=

(5)
J Ao+ 23l ds

where Z, is an arbitrary impedance parameter and S is
the discontinuity plane (z =0). In the following treatment,
let us choose the value of Z, equal to the intrinsic imped-
ance of the vacuum so that both the difference of electric
field and magnetic field in (5) can be taken into account
equally. F defined by (5) becomes zero for the exactly true
values of the electromagnetic fields, since, from the
boundary conditions, the transverse components of the
electromagnetic fields E,E" and H',H" must be con-
tinuous across the discontinuity plane S provided that
they are the correct fields. In other words, F' represents
the measure of the discrepancy from the satisfaction of
the boundary conditions. In general, the transverse elec-

where * indicates the complex conjugate and cc represents
the complex conjugate of the previous term to this sign.
Since the true fields must satisfy the following boundary
conditions:

Ej=E}'
Hy=Hy' (®
on the discontinuity plane S, (7) reduces to
0F=0 9

for the correct fields. Therefore, the stationary problem
associated with F is equivalent to the boundary value
problem using the conventional boundary conditions (8).
In the following analysis, the reflection, transmission, and
radiation fields are determined in such a way that F
becomes minimum. The electromagnetic fields thus ob-
tained are the best approximate fields in the sense of the
least square error. The condition for which F becomes
minimum is given by

oF

ax* =0

(10)

where X represents R, T, r,, or f,. Solving the simultaneous
complex linear equations (10), the coefficients R, T, r,, #;,
and, hence, the electromagnetic fields, can be obtained.

This is the outline of the least squares boundary resid-
ual technique which will be applied in the next section to
treat the discontinuity problem in the dielectric slab wave-
guide.

To compare the results with those obtained by other
techniques, two other methods used in the earlier paper
are briefly summarized below for the convenience of
reference.

B. Mahmoud-Beal’s Method (6]

In Mahmoud-Beal’s method,
boundary conditions

the conventional

E'=ET (11)
H'=H" (12)

are used instead of (5). Multiplying (11) and (12) by A"

* - . .
or HI", ¢ or E!I", respectively, and integrating over the

discontinuity plane S, the following simultaneous complex



312

linear equations are derived:

M 0
(ewmB" )+ 2 R\ B>+ 2 r<ELRT
=1 j=1

N
2 7}<e hII* (i=l’ "’N)
(emHY >+ 2 Re,H)" >+ 2 r{ELHY
Jj=1
o0
= 3 (KENHTY  (m=1,,00)
4=1
M ) .
(e b,y — 2 RV~ 3 re!" HY)
Jj=1 J=1
N
- 2 7}(8,11*,11/H> (i=1,"‘,N)
=1
3 < m* gl
* II# I *
<Erzll ’hm>— 21 Rj<Em ’hj>_ 21 rj<Em ’H] >
J= J=
(o]
= 2} ((KE,;HYY  (m=1,---,00) (I3)
where { ) represents the inner product defined as
<E,H>=f{E><H}-i_.ds. (14)
s
Solving the foregoing equation (13), R, 7, r, t,. and,

hence, the total electromagnetic fields can be obtained.
The mean-square error of the obtained electromagnetic
fields is larger than that associated with the least squares
boundary residual method.

C. Marcuse’s Method [7]

It is assumed that lines I and II support only one
surface mode of propagation, and that the discontinuity is
small so that the magnitudes of the reflection coefficients
|R| and |R(p)| are very small in comparison with unity. It
is assumed further that the electromagnetic fields of the
modes in lines I and II are approximately orthogonal,
namely,

f{el(p)xhn'}'z’zds«l (15)
S

5 [ @xH ()} i ds=do—p)  (16)
where 8 denotes the Dirac’s delta function. Under these
assumptions, equalizing the inner products of the fields in
line I to those in line II in a similar manner as
Mahmoud-Beal’s methods, and neglecting the quadratic
trivial terms, the reflection and the transmission
coefficients of the guided modes and the radiation modes
R, T and R(p), T(p) can be derived analytically as follows:

J ™ X by = ey x BT} i, ds

R== (17)
f {en* ><hm+ein><hn*}'izds
S
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2[{e”'><hm -izdsf{emxh"'}‘izds
__"’S S

f {e" X hy,+e,xh" }i, ds
s

(18)

R(o)=7 [ {enx HV(0) =™ (0)x Ry)ids (19

7(6)=3 [ {en XK (o) + ™ ()X R Jids. (20)

TRANSVERSE DISPLACEMENT AT A JUNCTION OF
Two DIELECTRIC SLAB WAVEGUIDES

HI.

In this section, the transverse displacement of the di-
electric slab waveguides as shown in Fig. 2 is analyzed as
a typical and practically important example of discontinu-
ity problem by using the three methods stated in the
previous section. The numerical results obtained by the
least squares boundary residual method are compared
with those obtained by two other methods, and the fea-
tures of each method are pointed out.

It is assumed that the incident wave is the TE dominant
mode, and that only the lowest TE mode can propagate
along two dielectric slab waveguides. The relative refrac-
tive index n of the guide is assumed to be 1.6, and the
frequency is normalized in such a way as k,d=1.0 where
2d is the thickness of the slab waveguide as shown in Fig.
2. Physically, for most of the radiation modes, the propa-
gation constants p in the x-direction are very close to that
of the incident mode. In other words, only a few radiation
modes have large values of p. Since the Gauss—Laguerre
functions decrease exponentially as p increases, they are
suitable to use for the expansions of R(p) and T(p). The
first three terms of the Gauss—Laguerre functions are

folp)=Ved exp( {pd )

file)=VEd (1~ (eod)) exp (- 57)

o) = \ﬁ{l—z(gpd)+(59 ) }exp( §pd)
' (1)

and the orthogonality relations are

o .
[t gwan={ 17

0 1 s 1=y
where § represents the concentration parameter which
determines the shape of the spatial spectrum of the radia-
tion modes.

Fig. 3 shows F given by (5) and the total power P,
obtained by the least squares boundary residual method
versus £ in (21) with the number of expansion terms as a
parameter. P, is the sum of the powers of reflection,
transmission, and radiation waves which must be equal to
1 provided that the results obtained are correct. We can
see from Fig. 3 that there exist particular values of ¢ for
which F becomes minimum. This means that, in the least
squares boundary residual method, the optimum ap-

(22)
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Fig. 2. Transverse displacement at the junction of two dielectric slab
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Fig. 3. Mean-square error F defined by (5) and the total power P,
evaluate¢ by the least squares boundary residual method with the
number of expansion terms as a parameter (A/2d=0.3).

proximation can be obtained by choosing the value of £
appropriately for each number of expansion terms.

Fig. 4 shows P, evaluated by Mahmoud-Beal’s
method versus £ In this method, it seems to be reasonable
to use the specific value of £ as an adequate one for which
P, becomes unity. However, as we can see from Fig. 4,
P, becomes unity for two different values of £ in the
cases of two- and three-term expansions. Different values
of ¢ gives entirely different spatial spectra of the radiation
power. Therefore, in Mahmoud-Beal’s method, there is
no reasonable criterion to find the suitable value of §
which gives the best approximation for each number of
expansicn terms.

Fig. 5 shows the transmission power P, the radiation
power P, and the total power P, evaluated by three
different methods versus number of expansion terms. P,
and P, evaluated by the least squares boundary residual
method converge to certain values, and the total power
P, approaches unity as the number of expansion terms
is increased. The transmission power P, and the radiation
power P, calculated by Mahmoud-Beal’s method are
quite different from those obtained by the other two
methods.

Fig. 6 shows the spatial spectrum of the forward radia-
tion power calculated by the least squares boundary resid-
val method with the number of expansion terms as a
parameter. The shape of the spatial spectrum of the radia-

Ptotal
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Fig. 4. Total power P, evaluated by Mahmoud-Beal’s method

versus ¢ (A/2d4=0.3).
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P, a1 evaluated by three different methods versus number of expan-
sion terms (A/2d=0.3).
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Fig. 6. Spatial spectra of the forwardly radiated power calculated by
the least squares boundary residual method with the number of
expansion lerms as a parameter.

tion power converges to a certain shape as the number of
expansion terms is increased. The result obtained by
Marcuse’s method is also shown (by dotted line) in Fig. 6.
As shown in Fig. 6, the spatial spectra of the radiation
power evaluated by both methods become maximum at
almost the same value of pd (except pd=1.0). This means
that both methods yield almost the same direction at
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Fig. 7. Spatial spectra of the forwardly radiated power calculated by
Mahmoud-Beal’s method with the number of expansion terms as a
parameter.

which the radiation power becomes maximum. However,
the spatial spectrum obtained by Marcuse’s method is not
correct at the vicinity of pd=1.0. The reason for this is
that the assumption |R(p){<1 in Marcuse’s method no
longer holds there. In other words, the spatial spectrum of
the radiation power evaluated by Marcuse’s method is not
valid at the vicinity of pd=1.0. As shown in Fig. 5, the
radiation power calculated by Marcuse’s method is large
in comparison with that obtained by the least squares
boundary residual method because of the contribution of
the integration of this unreasonable spatial spectrum of
the radiation in the vicinity of pd=1.0. This, in turn, gives
rise to the result that the total power P, evaluated by
Marcuse’s method is much closer to unity in comparison
with that obtained by the least squares boundary residual
method, but it does not necessarily mean that Marcuse’s
method gives a better approximation because of the rea-
sons stated above.

Fig. 7 shows the spatial spectrum of the forward radia-
tion power calculated by Mahmoud-Beal’s method with
the number of expansion terms as a parameter. The result
obtained by Marcuse’s method is also shown (by dotted
line) in the same figure. The spectrum is very different
from those calculated by the least squares boundary resid-
ual method (Fig. 6) and Marcuse’s method (dotted line).
The rate of convergence in Mahmoud-Beal’s method is
poor in comparison with that in the least squares
boundary residual method.

Fig. 8 shows the reflection, transmission, and radiation
powers P, P,, and P, respectively, evaluated by the least
squares boundary residual method versus the magnitude
of the transverse displacement A/24. We can see from
Fig. 8 that, in the case of the discontinuity of transverse
displacement, the reflected power is much smaller than
the radiated power. If the radiation modes are ignored,
the transmission and reflection power can be obtained by
very simple calculations. The results are shown in Fig. 8
by dashed lines.
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Fig. 8. Transmitted power P,, reflected power P,, radiated power P,
and total power P, calculated by the least squares boundary resid-
ual method with eight expansion terms. Dashed lines (----) show P,
and P, calculated simply by neglecting the radiation.

Fig. 9. Radiation patterns of electric fields. #=0° is in z-direction.
—— A/2d=1.0, - A/2d=0.3.

Fig. 9 shows the radiation patterns calculated by the
steepest decent method using the spatial spectrum of the
forward radiation power. § =0° coincides with the z-direc-
tion.

IV. CONCLUSIONS

The least squares boundary residual method to treat the
discontinuities in dielectric waveguides is presented. As an
example of application, the reflection, transmission, and
radiation waves produced by the transverse displacement
at the junction of two single-mode dielectric slab wave-
guides are calculated. The results obtained are compared
with those calculated by Mahmoud-Beal’s method and
Marcuse’s method. The features of the proposed method
are as follows. The rate of convergence of the numerical
calculations of this method is relatively fast in comparison
with Mahmoud-Beal’s method. In comparing Marcuse’s
method, the present method can yield the reflected waves
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and is applicable even to large discontinuities. The present
method is especially powerful to analyze the radiation
characteristics due to the discontinuity. If we can ignore
the radiation wave, the transmission and the reflection
powers can be obtained very easily by the least squares
boundary residual method.
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Computer-Aided Design of H-Plane Waveguide
Junctions with Full-Height Ferrites
of Arbitrary Shape

NAOMICHI OKAMOTO, MEMBER, IEEE

Abstract—A method for solving the problem of H-plane waveguide
junctions with a full-height ferrite post of arbitrary shape is proposed. The
junctions are allowed to have arbitrary cross section and arbitrary number
of ports. The method is based on the integral equations derived from the
reciprocity theorems in both the ferrite region and the air region ranging
from the reference planes of connecting waveguides to the inside of the
Jjunction.

For comparison with the previously published experimental and theoreti-
cal results, Y junctions with a circular ferrite post are first treated.
Excellent agreement has been found between the experimental data and
the numerical results obtained by the present method.

The performance of a Y-junction circulator with a triangular ferrite post
having rounded angles is next investigated. Both the ferrite geometry and
the internal dc magnetic field are examined in detail. For this geometry
the calculated 20-dB bandwidth has been found to become greater as the
cross section of the ferrite approaches a regular triangle from a circle.
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1. INTRODUCTION

VERSATILE waveguide junction which is now in

wide use is the ferrite junction circulator. The wave-
guide Y-junction circulator was first proposed by Chait
and Curry [1]. Davies [2] presented the theoretical treat-
ment for a symmetrical waveguide junction circulator
with a circular ferrite post, including a detailed field
analysis inside the junction. This method was extended to
Jjunctions with coaxial composite ferrite posts which pro-
duced much larger bandwidths [3]-[5]. In these analyses,
only the dominant-mode fields in the waveguides were
approximately matched to a summation of mode fields
within the junction. This neglect of the higher modes is
the reason for the discrepancy between the numerical
results and the experimental measurements. Later, this
defect was improved by adding the higher modes [6] and
by using the point-matching technique, and at the same
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