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Analysis of Discontinuities in Dielectric
Waveguides by Means of the Least
Squares Boundary Residual Method

KATSUMI MORISHITA, MEMBER, IEEE, SEI-ICHI INAGAKI, AND NOBUAKI KUMAGAI, SENIOR
MEMBER, IEEE

Abstmct—A novel approach to anafyze the discorrtimdties in open-type

transmission tines is proposed. The method used is the least squares

boundary residuaf technique which bas been applied previously to treat the

boundary-value problems in closed-type transmission lines. As an example

of application of our approach the reffect~ transndtt~ and radiated

waves caused by the tranaveme displacement at the junction of two

dielectric slab waveguides are calculated.

I. INTRODUCTION

D ISCONTINUITY problems in optical transmission

lines are of great interest from both the theoretical

and the practical points of view. So far, the discontinuities

at the junctions between optical fibers and/or optical

integrated circuits have been investigated experimentally

and analyzed theoretically by several authors [ 1]–[ 11].

However, most of the theoretical analyses reported previ-

ously have restricted limitations of practical application,

since they have ignored the radiated or reflected wave, or

both, under the assumption of slight discontinuity.

In this paper, the discontinuities in dielectric waveguides

are analyzed using the least squares boundary residual

method instead of conventional boundary conditions. As

an example of application of the proposed approach, the

reflected, transmitted, and radiated waves caused by the

transverse displacement at the junction of two single-

mode dielectric slab waveguides are calculated. The re-

sults are compared with those obtained by other methods,

and the features of the least squares boundary residual

method are clarified. The method used in the present

paper has been applied previously to treat the boundary-

value problems in closed-type waveguides [12], [13]. To

the authors’ knowledge, however, this method has not yet

been used to analyze the open-type waveguides such as
dielectric waveguides.
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Fig. 1. Discontinuity at the junction of two dielectric waveguides. (a)

Vertical section of the discontinuity between lines I and II. @)
Transverse cross section of the discontinuity at the junction of two
lines.

II. ANALYSIS OF DISCONTINUITY IN DIELECTRIC

WAVEGUIDES

A. Least Squares Boundary Residuai Method

The incoming wave incident upon the discontinuous

junction between dielectric waveguides I and II as

illustrated in Fig. 1 is reflected, transmitted, and radiated.

Let e,. and h,n be the transverse components of the

electric and magnetic fields of the incident wave, respec-

tively, and e,, h, and e(p), /t(p) be the electromagnetic fields

of the ith guided mode and the radiation mode, respec-

tively. p denotes the propagation constant of the radiation

mode in the transverse direction outside the waveguide.

The transverse components of the total electromagnetic

fields Er and ~1 in line I and E1l and 1711in line II at the

discontinuity plane (z= O) can be expressed in terms of

the eigenmodes of line I and line II, respectively, as

follows :

,=, I ~ /R(P)fil(p)dp
H1=h,n– ~ Rhl–

,=, ~ fT(P)el’(p)dp
E1l= $ ~ell+

H’l= $ ~h:’+ @I)/t’l (p)dp
,=1

(1)
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where R, and ~, R(p) and T(p) are the reflection and

transmission coefficients of the ith guided mode and the

radiation mode, respectively. M and N are the maximum

numbers of the guided modes supported in lines I and II,

respectively.

To transform the integral with respect to p in (1) into

the discrete summations, let us expand R(p) and T(p) into

311

tromagnetic fields E1’11 and H]’11 consist of the true fields

EJ’ ‘I, H~”1 and the error fields M31>11,13H1’11:

~1,11=~:>11+~~1,11

~LII= @II+ ~HI,lI. (6)

Substituting (6) into (5), the first variation of F can be

derived as

j-- (SE1*. E:– E;l) – ijE1l*. (E: –E:l)+ ,Z;{8H1*. (H:– @l)- 8@*.(@-~; l)})ds+ CC

8F=

J {Ifd’+%kd’}d
(7)

s

the sum of proper functions in the form

R(p) = ~ rJ(p)

T(p) = ~ t~(p). (2)

Substituting (2) into (l), we get

M

E1=e,n+ x Rie; + ~ r,EL1
,=1 isl

~=1 1=1

N cc

m

(3)H1l = $ ~h:l + ,~1 t,H,ll
is]

where

J
~1,11 = ~(P)eI,II (p) dp

J (4)HLII = j_(p)/#ll (~)dp.
1

Now, ;et us define the mean-square error of the trans-

verse components of the electromagnetic fields between

lines I and II at the discontinuity plane as follows:

J{lE1-E1112+z:l~’-~~(112)~s
F= s

~{le,~l’+-z~lh,n,’}ds
s

where ZD is an arbitrary impedance parameter

(5)

and S is

the discc~ntinuity plane (z= O). In the following treatment,

let IUS choose the value of -ZOequal to the intrinsic imped-

ance of the vacuum so that both the difference of electric

field ancl magnetic field in (5) can be taken into account

equally. F defined by (5) becomes zero for the exactly true

values of the electromagnetic fields, since, from the

boundary conditions, the transverse components of the

electromagnetic fields E 1,E 11 and H1, H1l must be con-
tinuous across the discontinuity plane S provided that

they are the correct fields. In other words, F represents

the meamre of the discrepancy from the satisfaction of

the boundary conditions. in general, the transverse elec-

where * indicates the complex conjugate and cc represents

the complex conjugate of the previous term to this sign

Since the true fields must satisfy the following boundary

conditions:
@ = @

H:= H:l (8)

on the discontinuity plane S, (7) reduces to

8F=0 (I 9;1

for the correct fields. Therefore, the stationary problem

associated with F is equivalent to the boundary value

problem using the conventional boundary conditions (8).

In the following analysis, the reflection, transmission, and

radiation fields are determined in such a way that F

becomes minimum. The electromagnetic fields thus ob-

tained are the best approximate fields in the sense of the

least square error. The condition for which F becomes

minimum is given by

(10:)

where X represents R, T, r,, or t,.Solving the simultaneous

complex linear equations (10), the coefficients & T, r,, ti,

and, hence, the electromagnetic fields, can be o“btained.

This is the outline of the least squares bounclary resid-

ual technique which will be applied in the next section to

treat the discontinuity problem in the dielectric slab wave-

guide.

To compare the results with those obtained by other

techniques, two other methods used in the earlier paper

are briefly summarized below for the convenience of

reference.

B. Mahmotid-Beal’s Method [6]

In Mahmoud–Beal’s method, the conventional

boundary conditions

E1=EII (11)

~I=HII ( 12)

are used instead of (5). Multiplying (11) and (12) by ih~”

or H~l*, e)l* or Ejr”, respectively, and integrating g over th(e

discontinuity plane S, the following simultaneous complex
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linear equations are derived:

M cc

(e,n,li:’”) + ~ R,(tj,h:l*) + ~ rj(~’,h:l*)
,=1 J=l

= $ q<t#’,h:I*) (i=l,...,fv)
,=1

= jj j(~ll,H;l*) (wz=l,...,cQ)
4=1

(e~’”,h,n) -$ R,(e~l*,h~) -$ ~(e~l*,Hj’)
j=l ,=1

= $ ~(e~’’,ljj”) (i=l,...,N)

(E;l*,h,n) -5 R,(E:’”,h;) - ~ ~(E:*,~’)
~=1 ,=1

= ~ t(E;l*,~l’) (m=l,. . .,co) (13)
,=IJ

where ( ) represents the inner product defined as

(E, H)=~{EXH}.i:ds. (14)
s

Solving the foregoing equation (13), R,, ~, r,, t,, and,

hence, the total electromagnetic fields can be obtained.

The mean-square error of the obtained electromagnetic

fields is larger than that associated with the least squares

boundary residual method.

C. Marcuse’s Method [ 7]

It is assumed that lines I and 11 support only one

surface mode of propagation, and that the discontinuity is

small so that the magnitudes of the reflection coefficients

IR I and /R(p)/ are very small in comparison with unity. It

is assumed further that the electromagnetic fields of the

modes in lines I and 11 are approximately orthogonal,

namely,

~{e’(p)xhll*}izds<<l (15)

where 8 denotes the Dirac’s delta function. Under these

assumptions, equalizing the inner products of the fields in

line I to those in line II in a similar manner as

Mahmoud–Beal’s methods, and neglecting the quadratic

trivial terms, the reflection and the transmission

coefficients of the guided modes and the radiation modes

R, T and R(p), T(p) can be derived analytically as follows:

J{ell* X h,n– einX hll*}.izds

R= s

J{

(17)

e’l* X bin+ ein X /tll*]. i=ds
s

J J2 {ell*xh,n}.izds {e,nxhll*}.izds

T= s
s

J{

(18)

ell* X h,n+ elmX hll*}. izds
s

~(p) = ~ ~ { ein X hll*(p) – ell*(p) X h,n}.iz ds (19)
s

T(p) = Af {e,n X hll*(p) + ell*(p) X h,n}.iz ds.
2.9

(20)

III. TRANSVERSE DISPLACEMENT AT A JUNCTION OF

Two DIELECTRIC SLAB WAVEGUIDES

In this section, the transverse displacement of the di-

electric slab waveguides as shown in Fig. 2 is analyzed as

a typical and practically important example of discontinu-

ity problem by using the three methods stated in the

previous section. The numerical results obtained by the

least squares boundary residual method are compared

with those obtained by two other methods, and the fea-

tures of each method are pointed out.

It is assumed that the incident wave is the TE dominant

mode, and that only the lowest TE mode can propagate

along two dielectric slab waveguides. The relative refrac-

tive index n of the guide is assumed to be 1.6, and the

frequency is normalized in such a way as kod= 1.0 where

2d is the thickness of the slab waveguide as shown in Fig.

2. Physically, for most of the radiation modes, the propa-

gation constants p in the x-direction are very close to that

of the incident mode. In other words, only a few radiation

modes have large values of p. Since the Gauss–Laguerre

functions decrease exponentially as p increases, they are

suitable to use for the expansions of R(p) and T(p). The
first three terms of the Gauss–Laguerre functions are

(21)

and the orthogonality relations are

(22)

where $ represents the concentration parameter which

determines the shape of the spatial spectrum of the radia-

tion modes.

Fig. 3 shows F given by (5) and the total power PtOt,l

obtained by the least squares boundary residual method

versus $ in (21) with the number of expansion terms as a

parameter. PtOt,[ is the sum of the powers of reflection,

transmission, and radiation waves which must be equal to

1 provided that the results obtained are correct. We can

see from Fig. 3 that there exist particular values of $ for

which F becomes minimum. This means that, in the least

squares boundary residual method, the optimum ap-
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Fig. 2. Transverse displacement at the junction of two dielectric slab

waveguides.
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Fig. 3. Mean-square error F defined by (5) and the total power PtOa[
evaluated by the least squares boundary residual method with the
number of expansion terms as a parameter (A/2d= 0.3).

proximaiion can be obtained by choosing the value of $

appropri~tely for each number of expansion terms.

Fig. 4 shows PtO,~l evaluated by Mahmoud–Beal’s

method versus & In this method, it seems to be reasonable

to use the specific value of ~ as an adequate one for which

P ,0,~1becomes unity. However, as we can see from Fig. 4,

P ,O,&lbecomes unity for two different values of $ in the

cases of two- and three-term expansions. Different values

of ( gives entirely different spatial spectra of the radiation

power. Therefore, in Mahmoud–Beal’s method, there is

no reasonable criterion to find the suitable value of &

which gives the best approximation for each number of

expansicn terms.
Fig. 5 shows the transmission power P,, the radiation

power p,,~, and the total power PtOt~l evaluated by three

diflereni methods versus number of expansion terms. P,

and P,.~ evaluated by the Ileast squares boundary residual

method converge to certain values, and the total power

‘to Lal a~?roaches ‘nity as ‘he ‘umber ‘f ‘xPansion ‘erms
is incrm seal. The transmission power P, and the radiation

power P,,~ calculated by Mahmoud–Beal’s method are
quite different from those obtained by the other two

methods.

Fig. 6 shows the spatial spectrum of the forward radia-

tion power calculated by the least squares boundary resid-

ual method with the number of expansion terms as a

parameter. The shape of the spatial spectrum of the radia-
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Fig. 4. Total power I’toml evaluated by Mahrnoud– Beal’s method
versus.$ (A/2d= 0.3).
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sion terms (A/2d= 0.3).
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Fig. 6. Spatial spectra of the forwardly radiated power calculated by
the least squares boundary residual method with the number of
expansion terms as a parameter.

tion power converges to a certain shape as the number of

expansion terms is increased. The result obtained b,y

Marcuse’s method is also shown (by dotted line) in Fig. 6.

As shown in Fig. 6, the spatial spectra of the radiation

power evaluated by both methods become maximum at

almost the same value of pd (except pci = 1.0). This means

that both methods yield almost the same direction a,t
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Fig. 7. Spatial spectra of the forwardly radiated power calculated by
Mahmoud-Beal’s method with the number of expansion terms as a
parameter.

which the radiation power becomes maximum. However,

the spatial spectrum obtained by Marcuse’s method is not

correct at the vicinity of pd = 1.0. The reason for this is

that the assumption ]R(p)l <<1 in Marcuse’s method no

longer holds there. In other words, the spatial spectrum of

the radiation power evaluated by Marcuse’s method is not

valid at the vicinity of pd= 1.0. As shown in Fig. 5, the

radiation power calculated by Marcuse’s method is large

in comparison with that obtained by the least squares

boundary residual method because of the contribution of

the integration of this unreasonable spatial spectrum of

the radiation in the vicinity of pd= 1.0. This, in turn, gives

rise to the result that the total power PtOL.l evaluated by

Marcuse’s method is much closer to unity in comparison

with that obtained by the least squares boundary residual

method, but it does not necessarily mean that Marcuse’s

method gives a better approximation because of the rea-

sons stated above.
Fig. 7 shows the spatial spectrum of the forward radia-

tion power calculated by Mahmoud–Beal’s method with

the number of expansion terms as a parameter. The result

obtained by Marcuse’s method is also shown (by dotted

line) in the same figure. The spectrum is very different

from those calculated by the least squares boundary resid-

ual method (Fig. 6) and Marcuse’s method (dotted line).

The rate of convergence in Mahmoud-Beal’s method is

poor in comparison with that in the least squares

boundary residual method.

Fig. 8 shows the reflection, transmission, and radiation

powers P,, P,, and P,,~, respectively, evaluated by the least
squares boundary residual method versus the magnitude

of the transverse displacement A/2d. We can see from

Fig. 8 that, in the case of the discontinuity of transverse

displacement, the reflected power is much smaller than
the radiated power. If the radiation modes are ignored,

the transmission and reflection power can be obtained by

very simple calculations. The results are shown in Fig. 8

by dashed lines.
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Fig. 8. Transmitted power P,, reflected power P,, radiated power Pra~,

and total power Ptowl calculated by the least squares boundary resid-
ual method with eight expansion terms. Dashed fines (----) show P,
and P, calculated simply by neglecting the radiation.

90°

Fig. 9. Radiation patterns of electric fields. O= 0° is in z-direction.
— A/2d= 1.0, ---- A/2d=0.3.

Fig. 9 shows the radiation patterns calculated by the

steepest decent method using the spatial spectrum of the

forward radiation power. O= 0° coincides with the z-direc-

tion.

IV. CONCLUSIONS

The least squares boundary residual method to treat the

discontinuities in dielectric waveguides is presented. As an

example of application, the reflection, transmission, and

radiation waves produced by the transverse displacement

at the junction of two single-mode dielectric slab wave-

guides are calculated. The results obtained are compared

with those calculated by Mahmoud–Beal’s method and

Marcuse’s method. The features of the proposed method

are as follows. The rate of convergence of the numerical

calculations of this method is relatively fast in comparison

with Mahmoud–Beal’s method. In comparing Marcuse’s

method, the present method can yield the reflected waves
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and is applicable even to large discontinuities. The present

method is especially powerful to analyze the radiation

character sties due to the discontinuity. If we can ignore

the radiation wave, the transmission and the reflection

powers can be obtained very easily by the least squares

boundary residual method.
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Design of If-Plane Waveguide
with Full-Height Ferrites

of Arbitrary Shape
NAOMICHI OKAMOTO, MEklBER, IEEE

Alktract.–A method for solving the problem of If-plane wavegoide

junctions witfs a full-height ferrite post of arbitrary shape is proposed. The

junctions are aflowed to have arbitrary cross section and arbitrary number

of ports. The method is based on the fntegraf equations derived from the

reciprocity theorems in both the ferrite region and the afr region rangbsg

from the referenee planes of connecting waveguides to the inside of the

jonction.

For comparison with the previously pubfished experirnentaf and tbeoreti-

CRI results, Y junctions with a circular ferrite post are fiit treated.

Excellent :agreement has beers found between the experimental data and

the )nomeneaf musks obtained by the present method.

The performarree of a Y-jooetion circulator with a triaogukm ferrite post

having rounded angfes is next investigated. Both the ferrite geometry and

the intemaf dc magnetic field are examined in detaiL For this geometry

the calcokted 20-dB bandwidth baa been found to beeome greater as the

cross section of the ferrite approaches a regnfar triangle from a circle.

Manuscript received September 21.1977: revisedAugust 7, 1978,
The author is with the Department of Electronic Engineering,
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I. INTRODUCTION

A VERSATILE waveguide junction which is now in

wide use is the ferrite junction (circulator. The wave-

guide Y-junction circulator was first proposecl by Clha.it

and Curry [1]. Davies [2] presented the theoretical treatm-

ent for a symmetrical waveguide junction circulator

with a circular ferrite post, including a detailed field

analysis inside the junction. This method was extended to

junctions with coaxial composite ferrite posts ‘which prc)-

duced much larger bandwidths [3]–[5]. In these analyses,

only the clorninant-mode fields in the waveguides were

approximately matched to a summation of mode fieldls

within the junction. This neglect of the higher modes is

the reason for the discrepancy between the numerical

results and the experimental measurements. Later, this

defect was improved by adding the higher triodes [6] and

by using the point-matching technicpte, and at the same
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